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There is increasing evidence for the importance of tumor oxygenation in development, 
progression, and response to therapy. Consequently, many techniques have been developed 
to assess tumor oxygenation, as reviewed extensively (1-7). Methods may provide a qualitative 
impression of oxygenation status or rigorous quantitation. Techniques vary in spatial and 
temporal resolution and the ability to assess dynamic changes. Some exploit endogenous 
molecules or physical characteristics, while many apply reporter molecules to interrogate 
oxygen tension (pO2). This tutorial will focus on magnetic resonance approaches, but place 
them in the context of competing modalities. 

 It has long been appreciated that hypoxic tumor cells are relatively resistant to 
radiotherapy. Indeed, a three fold increase in radio resistance may occur when cells are 
irradiated under hypoxic conditions compared with pO2 > 15 torr for a single radiation dose. 
However, recent modeling indicates that the proportion of cells in the range 0 - 20 torr may be 
most significant in terms of surviving a course of fractionated radiotherapy (8). Increasingly, 
there is evidence that hypoxia also influences such critical characteristics as angiogenesis, 
tumor invasion and metastasis (4, 9). Thus, the ability to measure pO2 non-invasively, and 
repeatedly, with respect to acute or chronic interventions becomes increasingly important. 
Patients could be stratified according to baseline hypoxia to receive adjuvant interventions 
designed to modulate pO2, or more intense therapy as facilitated by IMRT (Intensity Modulated 
Radiation Therapy). Tumors, which do not respond to interventions, may be ideal candidates 
for hypoxia selective cytotoxins (e.g., tirapazamine). Noting that any therapy and intervention 
may have side effects or simply add to clinical costs, it is vital that efficacy be established and 
therapy be optimized for an individual patient. Whether initially hypoxic regions of a tumor can 
be modified to become better oxygenated has long been considered a key to improving 
outcome of irradiation. However, many attempts to improve therapeutic outcome by 
manipulation of tumor oxygenation have shown only modest success in the clinic (10) and it is 
thought that lack of success may have resulted from inability to identify those patients, who 
would benefit from adjuvant interventions. While pO2 determinations could be of great clinical 
value, they are also vital to many laboratory investigations of new drugs and studies of tumor 
development.  

Many reports have now shown that tumors are highly heterogeneous and have 
extensive hypoxia. Furthermore, strong correlations have been shown in cervix and head and 
neck tumors between median pO2 or hypoxic fraction and survival or disease free survival 
using the Eppendorf Histograph electrode system (11, 12). Extensive hypoxia has also been 
found in tumors of the prostate and breast (13, 14). Thus, tumor oxygenation is now 
recognized as a strong prognostic indicator. However, the Histograph is highly invasive and it 
is not possible make repeated measurements at individual locations, precluding dynamic 
studies to assess the influence of interventions on tumor pO2. A non-invasive imaging 
approach would be preferable. 

As an ultimate goal, oximetry would be based on endogenous tissue properties. 
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Hemoglobin is a candidate reporter molecule and near infrared spectroscopy can provide a 
direct measure of variation in tumor hematocrit (viz. blood volume) and relative hemoglobin 
oxygen saturation (15). Based on the paramagnetic property of deoxyhemoglobin BOLD 
(Blood Oxygen level Dependant) contrast 1H MRI provides high spatial and temporal resolution 
related to hemoglobin oxygen saturation, but signal also responds to variations in vascular 
volume, and flow and measurements provide relative pO2 rather than absolute values (16, 17). 
The BOLD effect is the foundation of fMRI used extensively in neurological research and we 
have successfully implemented it to assess response to adjuvant chemotherapy for advanced 
local breast cancer (18). However, changes in vascular oxygenation may not coincide with 
tissue pO2, which is a balance between oxygen delivery and consumption and clearance. 
Many biochemical pathways are under oxygen regulation and can provide an elegant window 
on hypoxia, e.g., induction of HIF-1 and Glut-1 together with secondary responses such as 
increased production of VEGF, NIP3 and tumor associated macrophage activity (9). To date, 
such approaches have been limited to histology, requiring biopsy. Another approach is to 
adopt hypoxic response elements (HREs) as promoter sequences coupled to reporter genes, 
such as GFP (green fluorescent protein) or luciferase.  

More generally, tumor oxygenation has been evaluated using specific exogenous 
reporter molecules and agents have been developed for use with nuclear imaging, optical 
imaging, ESR, and NMR. Two fundamental approaches evaluate either hypoxia or pO2.  
Hypoxia

Specific classes of reporter molecule have been developed to reveal hypoxia (e.g., 
pimonidazole, EF5, CCI-103F, Cu-ATSM, galactopyranoside IAZA) (5). Following IV infusion, 
these agents become reduced in tissues and are trapped. However, in the presence of oxygen 
they are reoxidized and ultimately clear from the body. Histological assessment of the 
distribution of these agents provides microscopic indications of local hypoxia. EF5, 
pimonidazole, and Cu-ATSM are currently being tested in clinical trials and correlations have 
been reported with clinical outcome. Many variants have been proposed over the past 20 
years and incorporation of radionuclides has facilitated non-
invasive investigations using PET or SPECT, while 19F labels 
permit NMR spectroscopy (19). Several 19F NMR hypoxia 
agents have been tested, e.g., hexafluoromisonidazole (CCI-
103F), EF5, NLTQ-1, SR-4554, and Ro 07-0741). SR-4554 
is being evaluated in an ongoing clinical trial (20).  
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Assessment of hypoxia is predicated on uptake and trapping, which are assessed as 
the relative signal at various time points (retention index) or based on the relative signals from 
tumor and surrounding control tissues. Weak signals generally restrict measurements to a 
global value across the whole tumor. Importantly, correlations between uptake in murine 
tumors and radiobiological hypoxic fraction have been reported, though intriguingly not with 
electrode measurement of pO2. It has been suggested that the latter mismatch arises from the 
relative contribution of chronic and acute hypoxia. Trapping may also depend on expression of 
nitroreductases and be modulated by glutathione. Likewise, tumor perfusion could influence 
access of the agents to tumor tissue, particularly poorly perfused regions, which are expected 
to be hypoxic. One might also expect the NMR signal to be broadened upon adduct formation 
with macromolecules (21). A typical dose has been reported as 180 mg/kg IP in mice (19) or 
1400 mg/m2 for patients (20). Generally, only a single time point is investigated, but dynamic 
variations in hypoxia may be assessed, even in biopsy specimens, by applying pairs of hypoxia 
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reporters in a pulse chase fashion (22). Direct detection of hypoxia is essentially a chemical 
approach whereby reporter molecules are reduced and trapped as non-specific adducts or 
reoxidized and cleared.  
Oximetry 

pO2 may be measured directly using physical interactions between oxygen and reporter 
molecules. Phosphorescent and fluorescent agents have been used for optical measurements 
based on oxygen dependant signal quenching. Reporter molecules have been developed for 
use with ESR, where the linewidth is highly sensitive to oxygen (6, 7). NMR oximetry has 
generally followed the pioneering work of Thomas et al. (23), who showed that tissue pO2 could 
be imaged in various organs based on the 19F NMR spin lattice relaxation rate (R1=1/T1) of 
perfluorocarbon reporter molecules following IV infusion of emulsion. At any given magnetic 
field (Bo) and temperature (T) sensitivity to changes in pO2 is given by R1= a + bpO2. This 
linear relaxation rate dependence arises from the paramagnetic oxygen, which is highly soluble 
in perfluorocarbons. According to Henry’s Law, the dissolved mole fraction is related directly to 
the partial pressure of oxygen and R1 = R1a + (R1p/K)pO2. The slope (R1p/K) indicates the 
response of a particular resonance to pO2. 

The sensitivity of R1 of individual perfluorocarbon resonances varies widely and 
depends on the intrinsic anoxic relaxation rate, the solubility of oxygen and the ability of the 
oxygen molecule to approach molecular moieties. Another consideration is R1 sensitivity to 
temperature. Over small temperature ranges, a linear correction to calibration curves is 
appropriate. However, it is preferable for a pO2 sensor to exhibit minimal response to 
temperature, since this is not always known precisely in vivo and temperature gradients may 
occur across tumors. Even a relatively small error in temperature estimate can introduce a 
sizable discrepancy into the apparent pO2, e.g., the relative error introduced into a pO2 
determination by a 1 oC error in temperature estimate ranges from 8 torr/oC for 
perfluorotributylamine, to 3 torr/oC for PFOB (perflubron) or 15-crown-5-ether (15C5) (24) and 
0.1 torr/oC for hexafluorobenzene (HFB) (1), when pO2 is actually 5 torr.    

PFCs essentially act as molecular amplifiers, since the solubility of oxygen is greater 
than in water, but thermodynamics require that the pO2 in the PFC will rapidly equilibrate with 
the surrounding medium, and estimates of diffusion suggest the equilibration occurs within 
seconds. Since relaxation is proportional to oxygen concentration, the effect is greater at a 
given pO2 than for water. Importantly, ions do not enter the hydrophobic PFC phase, and thus, 
do not affect the bulk relaxation. Indeed, PFCs are typically exceedingly hydrophobic and do 
not mix with the aqueous phases, but rather form droplets or emulsions. Based on these 
principles, PFCs have been applied to in vivo pO2 measurements.  

The most popular route for the delivery of PFCs is as emulsions injected intravenously. 
Given the extremely hydrophobic nature of PFCs, they do not dissolve in blood directly, but 
may be formulated as biocompatible emulsions. Some investigators have undertaken MR 
spectroscopy and imaging relaxometry of PFC in the blood, providing measurements of 
vascular pO2. Primary vascular clearance is by macrophage activity over 1 to 2 days leading to 
extensive accumulation in the liver, spleen, and bone marrow. Indeed, this is a major 
shortcoming of IV delivery, since animals may exhibit extensive hepatomegaly. Many 
investigators have measured tissue pO2 in liver, spleen, and tumors following clearance from 
the blood (1, 23-25). Typically, 100s μl of emulsion are required with mice and several ml for 
studies in rats. 
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Many PFCs (e.g., perfluorotributylamine (PFTB), perflubron PFOB), TheroxTM (F44-E)) 
have several 19F NMR resonances, which can be exploited to provide additional information in 
spectroscopic studies, but seriously hamper effective imaging (25). Multiple resonances can 
lead to chemical shift artifacts in images, which compromise the integrity of relaxation rate 
measurements, though they can be avoided by selective excitation, or detection, chemical shift 
imaging, deconvolution or sophisticated tricks of NMR spin physics. Thus, a PFC exhibiting a 
single 19F NMR resonance is preferable. Choice of PFC is also governed by practical 
considerations, such as cost and availability, since several products, particularly, proprietary 
emulsions may be difficult to obtain.  

Both spectroscopic and imaging approaches have been applied to tissue pO2 
measurements depending on the available signal-to-noise. It appears that uptake and 
distribution efficiency following IV administration vary with tumor type, but in general, maximum 
signal is detected from the tumor periphery corresponding to regions of greater perfusion (26). 
Several reports have examined changes in tumor pO2 in response to acute interventions, such 
as vasoactive drugs and hyperoxic gases. Spectroscopic time resolution has ranged from 
seconds to minutes, while imaging often takes longer. Long tissue retention facilitates chronic 
studies during tumor development and progressive tumor hypoxiation has been observed over 
extended periods of many days (26, 27). To avoid reticuloendothelial uptake and bias towards 
well perfused regions, we favor direct intratumoral (IT) injection of neat PFC allowing any 
region of interest in a tumor to be interrogated immediately. Use of a fine needle ensures 
minimal tissue damage.  

 Prompted by earlier studies, we surveyed a number of 
commercial PFCs and identified that hexafluorobenzene (HFB) has 
many virtues as a pO2 reporter (28). Symmetry provides a single 
narrow 19F NMR signal and the spin lattice relaxation rate is highly 
sensitive to changes in pO2, yet minimally responsive to temperature. 
HFB is cheap, readily available commercially in high purity, and well 
characterized in terms of lack of toxicity (29). Following initial 
spectroscopic studies, which used 10-20 μl HFB injected into the 
tumor center or periphery, we have now developed rapid imaging 
methods (1). Recognizing that tumors are heterogeneous and that pO2 may fluctuate, we 
developed a procedure [FREDOM (Fluorocarbon Relaxometry using Echo planar imaging for 
Dynamic Oxygen Mapping)], which allows repeated quantitative maps of regional pO2 to be 
achieved with multiple individual locations (50-150) simultaneously in 6.5 mins with a precision 
of 1-3 torr, when pO2 is in the range 0-15 torr (1). HFB is highly volatile and does not form 
stable emulsions, however, the mobile fluid allows a very fine sharp needle (32 Gauge) to be 
used for intra tumoral injection at multiple locations. Overlaying 19F MR images on the 
corresponding proton images reveals the distribution of HFB. Typically, 50 μl HFB are injected 
and we typically interrogate 5 – 10 % of a tumor. Highly consistent inter tumor behavior 
between multiple tumors of a given type (and size) suggests appropriate sampling. Since HFB 
is highly volatile and clears from tumors within 24 h, repeated measurements on subsequent 
days for chronic longitudinal investigations usually requires re-administration of the HFB: the 
highly consistent data achieved in tumors with such successive measurements indicates the 
effective representation of the true distribution of oxygen tensions within the tumors (30).  
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At 37 oC and 4.7 T: pO2 (torr) = (R1(s-1) -0.0835)/0.001876, so that T1 reaches 12 s 
under anoxic conditions. To avoid excessive experimental time we favor pulse burst saturation 
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recovery (PBSR) echo planar imaging (EPI) relaxometry. To further enhance measurements, 
we apply the ARDVARC (Alternated Relaxation Delays with Variable Acquisitions to Reduce 
Clearance effects) acquisition protocol (1). Traditional T1 measurement sequences acquire 
data with delays in monotonic order, whereas we alternate longer and shorter delays to 
minimize any systematic errors, which would be introduced, if the signal amplitude varies 
during the measurement. The most powerful aspect of FREDOM is the ability to follow the fate 
of individual voxels with respect to interventions. We usually acquire at least three baseline 
pO2 maps followed by further maps accompanying interventions, such as hyperoxic gas 
breathing. Even under baseline conditions, fluctuations in T1 are apparent. These may arise 
from uncertainty in T1, which may be reflected in T1err or transient fluctuations in pO2. As with 
any measurement, sampling is a critical issue. FREDOM is analogous to the Eppendorf 
Histograph, in that it samples multiple locations, which appear to reflect interstitial pO2. 
Comparison of pO2 distributions using FREDOM or the Eppendorf Histograph has shown close 
similarity in both small and large tumors (31). However, FREDOM has the tremendous 
advantage over the Histograph of permitting dynamic measurements with respect to 
interventions. Dynamic studies in several tumor types have shown equivalent behavior when 
assessed using polarographic oxygen electrodes or OxyLiteTM or FOXYTM optical probes (30, 
32). Relative hypoxia has been compared with the histological reporter pimonidazole revealing 
similar trends across tumor types (33). Data may be presented as histograms revealing 
significant differences between mean and median pO2 and hypoxic fractions between small 
and large tumors and between the slow and fast growing sublines H and AT1 of the Dunning 
prostate R3327. FREDOM has been applied to investigations of diverse tumor types 
(syngeneic rat prostate and breast tumors and xenograft human lymphomas) with respect to 
growth and acute interventions. Zhao et al. (34) recently demonstrated rapid hypoxiation of rat 
breast tumors following administration of the vascular targeting agent Combretastatin with 
differential localized recovery 24 h later. Most significantly, it has been shown that the ability to 
modulate pO2, as assessed using FREDOM correlated with tumor growth delay accompanying 
irradiation (35). In some tumor types, there is a strong correlation between mean pO2 and 
hypoxic fraction, though this is not always the case. 
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Fig. 1 PO2 maps obtained from Dunning prostate R3327-AT1 and HI tumors when 
anesthetized rats breathed air and then oxygen. Under baseline conditions, the hypoxic 
fractions appear quite similar, but there is a markedly different response to breathing hyperoxic 
gas. In the AT1 tumor, only those regions, which were initially well oxygenated, responded. By 
contrast, in the HI all tumor regions, irrespective of baseline pO2 increased dramatically (data 
kindly provided by Dr. Dawen Zhao). 
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Fig. 2 Correlation between baseline 

hypoxic fraction (HF10; mean ± SE) and 
mean baseline pO2 for a group of 7 Dunning 
R3327-HI tumors assessed repeatedly at 
various sizes showing the expected inverse 
relationship (R > 0.9) (modified from (30).   

 
 
 

For small animal work, 19F NMR is widely available at 4.7, 7 and 9.4 T by minor 
adaptation of routine instrumentation, e.g., retuning proton RF coils. Within the recent past 19F 
MRI is also becoming available on clinical systems, facilitating translation of these techniques 
to patients. 19F NMR is particularly facile because there is essentially no background signal in 
tissues to interfere with measurements, yet the resonance frequency and sensitivity approach 
that of proton NMR. Proton NMR studies have shown changes in the tissue water relaxation 
rate with varying oxygenation, but many other processes (metal ions, cellularity, pH, ionic 
strength) also cause relaxation and the relaxivity due to oxygen is small. However, proton MRI 
is routinely applied for anatomical evaluation of tumors and would provide an ideal conduit for 
prognostic investigations. We have recently found a 
proton analog of HFB, specifically hexamethyldisiloxane 
(HMDSO). Like HFB, HMDSO is highly hydrophobic giving 
high gas solubility, and hence, strong R1 response to 
changes in pO2. Symmetry provides a single proton 
resonance (δ = 0 ppm), which is well removed from water 
and fat. Preliminary data suggest it provides a viable new approach to tumor oximetry (36).  

Each technique has specific virtues and drawbacks, which must be considered for any 
given application. In particular, the degree of invasiveness, the ability to generate maps of 
heterogeneity and the ability to assess dynamic changes. In addition, the location of a 
measurement, e.g., vascular vs. tissue compartments, the precision of measurements and 
spatial and temporal resolution. For further details of the techniques described above, the 
reader is referred to the references.  

This tutorial was supported by Cancer Imaging Program P20 CA 86354. 
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